
Suggested Solutions to:

Regular Exam, Fall 2014

Contract Theory, January 10, 2015

This version: February 4, 2015

Question 1: Adverse selection
and optimal procurement

(a)

Explain in words what each one of the four con-
straints says and why it must be satisfied.

IR-bad: The IR-bad constraint says that the
less able type of agent (with θ = θ) must, at least
weakly, prefer the contract aimed at her to the out-
side option. Choosing the contract yields the utility
t−C

(
q, θ
)

and the outside option yields the utility
zero. If this condition was violated, the less able
type of agent would not choose the contract that
P wants her to choose, because the outside option
yields a higher utility.

IR-good: The interpretation of the IR-good
constraint is analogous to the one for IR-bad, but
concerns the relatively able type (with θ = θ).

IC-bad: The IC-bad constraint says that the
less able type of agent must, at least weakly, prefer
the contract aimed at her to the contract aimed at
the relatively able agent. This condition must be
satisfied for the less able agent to choose the con-
tract P wants her to choose. P must ensure that
this condition is satisfied because P cannot observe
the agent’s type directly and therefore is unable to
instruct the agent to pick one of the two contracts:
each agent type must have an incentive to volun-
tarily choose the one aimed at her.

IC-good: The interpretation of the IC-good
constraint is analogous to the one for IC-bad, but
concerns the relatively able type.

(b)

Prove that incentive compatibility and Spence-
Mirrlees (Cqθ > 0) imply monotonicity; that is,

show that if the inequalities defining incentive com-
patibility hold and if the Spence-Mirrlees condition
is satisfied, then the quantity offered to the θ-type
agent is at least as large as the one offered to the
θ-type agent.

Incentive compatibility means that IC-bad and
IC-good hold. Adding these two inequalities yields:
[
t − C

(
q, θ
)]

+
[
t − C

(
q, θ
)]

≥
[
t − C (q, θ)

]
+
[
t − C

(
q, θ
)]

.

The t’s cancel out, so the above inequality simplifies
to

C
(
q, θ
)
− C

(
q, θ
)
≥ C

(
q, θ
)
− C (q, θ) .

Rewriting again on integral form yields
∫ q

q

Cq

(
q, θ
)
dq ≥

∫ q

q

Cq (q, θ) dq.

Rewriting yet again, on double integral form, we
obtain ∫ θ

θ

∫ q

q

Cqθ (q, θ) dqdθ ≥ 0.

By θ > θ and the Spence-Mirrlees property Cqθ >
0, the last inequality implies q ≥ q, which is what
we were asked to prove.

(c)

The first best optimal quantities are defined
by S′

(
qFB

)
= Cq

(
qFB , θ

)
and S′

(
qFB

)
=

Cq

(
qFB , θ

)
, respectively. Assume that the con-

straints (IR-good) and (IC-bad) are lax at the
second-best optimum (so that they can be disre-
garded). Show that, at the second-best optimum,
the good type’s quantity is not distorted relative to
the first best (qSB = qFB) and that the bad type’s
quantity is distorted downwards (qSB < qFB).
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We are allowed to assume that (IR-good) and (IC-
bad) are lax at the optimum. Given that, the prob-
lem can be written as: Choose

(
t, q, t, q

)
so as to

maximize

ν
[
S
(
q
)
− t
]
+ (1 − ν)

[
S (q) − t

]
,

subject to the following two constraints:

t − C
(
q, θ
)
≥ 0, (IR-bad)

t − C
(
q, θ
)
≥ t − C (q, θ) . (IC-good)

Claim : At the optimum of the problem above,
both constraints must bind.

Proof of claim :

• Suppose, per contra, that we have an optimum
and that IR-bad is lax. Then we can lower t,
while still satisfying both constraints (IC-good
will actually be relaxed), thereby increasing
the value of the objective function (for this is
decreasing in t). But that is impossible, since
we started at an optimum. Hence IR-bad must
bind at an optimum.

• Suppose, per contra, that we have an optimum
and that IC-good is lax. Then we can lower t,
while still satisfying both constraints (IR-bad
will not be affected), thereby increasing the
value of the objective function (for this is de-
creasing in t). But that is impossible, since we
started at an optimum. Hence IC-good must
bind at an optimum.

Given that both constraints bind, we can replace
the inequalities with equalities and then solve for t
and t. Doing this we get:

t − C
(
q, θ
)

= 0 ⇒ t = C
(
q, θ
)

and
t − C

(
q, θ
)

= t − C (q, θ) ⇒

t = C
(
q, θ
)

+ t − C (q, θ)

= C
(
q, θ
)

+ C
(
q, θ
)
− C (q, θ) .

Plugging these values of t and t into P’s objective
function yields

V = ν
[
S
(
q
)
− t
]
+ (1 − ν)

[
S (q) − t

]

= ν
[
S
(
q
)
− C

(
q, θ
)
− C

(
q, θ
)

+ C (q, θ)
]

+(1 − ν)
[
S (q) − C

(
q, θ
)]

P’s problem is now to maximize the objective V
above with respect to only two choice variables, q
and q.

The first-order condition with respect to q is:

∂V

∂q
= ν

[
S′
(
q
)
− Cq

(
q, θ
)]

= 0

⇒ S′
(
qSB

)
= Cq

(
qSB , θ

)
.

• This means that qSB = qFB , as we were asked
to show.

The first-order condition with respect to q is:

∂V

∂q
= ν

[
−Cq

(
q, θ
)

+ Cq (q, θ)
]
+ (1 − ν)

[
S′ (q) − Cq

(
q, θ
)]

= 0

or

(1 − ν) S′ (q) = (1 − ν) Cq

(
q, θ
)
+ν
[
Cq

(
q, θ
)
− Cq (q, θ)

]

or

S′
(
qSB

)
= Cq

(
qSB , θ

)
+

ν

1 − ν

[
Cq

(
qSB , θ

)
− Cq

(
qSB , θ

)]
.

• From the last equality we see that qSB < qFB

if and only if the last term on the right-hand
side is strictly positive. We can write:

ν

1 − ν

[
Cq

(
qSB , θ

)
− Cq

(
qSB , θ

)]
> 0 ⇔

Cq

(
qSB , θ

)
− Cq

(
qSB , θ

)
> 0 ⇔

∫ θ

θ

Cqθ

(
qSB , θ

)
dθ > 0,

which always holds due to the assumptions
that θ > θ and Cqθ > 0. This means that
we indeed have qSB < qFB , as we were asked
to show.

(d)

Explain the intuition for the results you were
asked to show under (c). Also explain the nature
of the trade-off that the principal faces.

The trade-off that the principal faces when solv-
ing the problem under asymmetric information is
between, on the one hand, letting the agent types
produce the efficient levels and, on the other hand,
not to give away rents to the agent.

The reason why P cannot achieve both those
goals is that he cannot observe A’s type. In par-
ticular, if P offered contracts that involved full ef-
ficiency and no rent extraction, then the good type
of agent would have an incentive to choose the con-
tract aimed at the bad type of agent (so IC-good
would be violated).

In order to make sure that IC-good is satisfied,
P can do two things.
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• First, he can make the bad type’s contract less
attractive in the eyes of the good type by ask-
ing the bad type to produce less (so a quan-
tity below the efficient level). If doing that, P
would need to pay less money to the bad type
(to ensure that his IR constraint is satisfied),
which makes the bad type’s contract less at-
tractive.

• Second, P can make the payment in the good
type’s contract larger, which again would lower
the good type’s incentive to choose the bad
type’s contract.

• P will find it optimal to do a little bit of both
those things, thus distorting the bad type’s
quantity downwards and giving away some
rents to the good type.

From the lecture slides:

Key to the results we have derived is that the
good type is the one who gets, for any given q,
both:

(i) the highest marginal utility [due to Spence-
Mirrlees] and

(ii) the highest total utility.

Because of (ii), the principal’s top priority is to
make the good type choose his first-best quantity.

• That type can get a high utility level (relative
to the outside option utility), which the prin-
cipal then can grab a large part of.

If the principal were to take too much of the good
type’s utility, then that type would instead choose
the bad type’s bundle.

• To prevent this, the principal makes the bad
type’s bundle less attractive by lowering that
type’s quantity and payment.

• This way of separating the two types works
because of (i): The good type benefits less from
a reduction in q than the bad type.

Question 2: Moral hazard and
insurance when there are three
outcomes

(a)

Show that IR-H and IC bind at the optimum.

As stated in the question, P’s problem is to to max-
imize its profits subject to IR-H and IC. The La-
grangian can be written as

L = ŵ − πN1h (uN ) − πS1h (uS) − πB1h (uB)

+ λ [πN1uN + πS1uS + πB1uB − ψ − u (ŵ)]

+μ [(πN1 − πN0) uN + (πS1 − πS0) uS + (πB1 − πB0) uB − ψ] ,

where λ is the shadow price associated with IR-
H and μ is the shadow price associated with IC.
Next, consider the first-order condition w.r.t. P’s
three choice variables. The FOC w.r.t. uS is:

∂L
∂uS

= −πS1h
′ (uS) + λπS1 + μ (πS1 − πS0) = 0.

(1)

The FOC w.r.t. uB is:

∂L
∂uB

= −πB1h
′ (uB) + λπB1 + μ (πB1 − πB0) = 0.

(2)

The FOC w.r.t. uN is:

∂L
∂uN

= −πN1h
′ (uN ) + λπN1 + μ (πN1 − πN0) = 0.

(3)
Claim: At the second-best optimum we have

λ = πN1h
′ (uN ) + πS1h

′ (uS) + πB1h
′ (uB) > 0,

which means that IR-H binds at the optimum.
Proof : Adding up the three FOCs, using the as-

sumptions that πN0 + πS0 + πB0 = 1 and πN1 +
πS1 + πB1 = 1, yields the equality. The inequality
holds because h′ > 0.

Claim: At the second-best optimum we have μ >
0, which means that IC binds at the optimum.

Proof. Suppose, per contra, that μ = 0. Then
(1) implies that h′ (uS) = λ. Similarly, μ = 0
together with (2) and (3), respectively imply that
h′ (uB) = λ, and h′ (uN ) = λ. By assumption, the
utility function u is strictly concave, which means
that its inverse is strictly convex; hence h′ is strictly
increasing and we thus must have uN = uS = uB

(i.e., full insurance). However, these equalities in
the IC constraint above yields

Page 3



[(πN1 − πN0) + (πS1 − πS0) + (πB1 − πB0)] uN ≥ ψ

⇔ 0 ≥ ψ, (IC)

which is impossible.

(b)

Show that, at the optimum, the relationship
uS ≥ uB holds if, and only if, the following con-
dition is satisfied:

πB0

πB1
≥

πS0

πS1
(MLRP)

The FOC (1) yields

πS1h
′ (uS) = λπS1 + μ (πS1 − πS0)

or

h′ (uS) = λ + μ

(

1 −
πS0

πS1

)

.

Similarly, the FOC (2) yields

h′ (uB) = λ + μ

(

1 −
πB0

πB1

)

.

It follows from these equalities that

h′ (uS) ≥ h′ (uB)

⇔ λ + μ

(

1 −
πS0

πS1

)

≥ λ + μ

(

1 −
πB0

πB1

)

⇔
πB0

πB1
≥

πS0

πS1
,

where the last step uses μ > 0. Moreover, since h′ is
strictly increasing, h′ (uS) ≥ h′ (uB) is equivalent
to uS ≥ uB . Thus, uS ≥ uB ⇔ πB0

πB1
≥ πS0

πS1
, which

we were asked to show.

(c)

One can show that also if, as assumed in the
model, the condition (FOSD) is satisfied, the con-
dition (MLRP) may be violated. This means that
there exist parameter values for which, at the op-
timal contract, we have uB > uS ; that is, A gets a
higher utility after a big fire than after a small fire.
Explain the intuition for why it can be optimal for
P to design a contract with this feature.

In order to induce A to make an effort, P must
underinsure A: If A got the same utility whether
or not there was no fire, a small fire or a big fire,

then why would he make a costly effort in order to
avoid the fire? If we do have uB > uS , then that
means that A is in some sense more underinsured in
the case of a small fire than in the case of a big fire.
Why would P want to choose such an insurance pol-
icy? To see this, note that if P wants to provide a
strong incentive to make an effort, then he should
primarily underinsure the outcome for which choos-
ing a high effort has a big (positive) impact on the
probability of avoiding that outcome. For example,
suppose πS1 is smaller than πS0 (so making an effort
helps avoiding a small fire) but we have πB1 ≈ πB0

(so making an effort has hardly no impact on the
likelihood of a big fire). Then, if P wants to incen-
tivize A to make an effort, underinsuring A in case
of a small fire should be much more effective than
underinsuring A in case of a big fire. Why is that?
Well, there will be a big fire with (roughly) the same
likelihood regardless of whether A makes an effort
or not — so why should he look at the level of un-
derinsurance after that kind of fire when deciding
whether to make an effort? The condition (MLRP)
ensures that making an effort has a sufficiently big
impact on the big-fire likelihood, relative to the im-
pact on the small-fire likelihood, to guarantee that
uB ≤ uS .

(d)

Show, formally, that there cannot be full insur-
ance at the optimum. Also, provide verbal argu-
ments for why, or why not, the optimal contract
involves full insurance if P induces e = 0.

[Note that the first question was implicity an-
swered above under (a). Here it is answered again
and more explicitly, though.]

Proof that there cannot be full insurance at the
optimum: Suppose, per contra, that we indeed had
full insurance at the optimum, that is, that uN =
uS = uB . Using these equalities in (IC) yields

[πN1 − πN0 + πS1 − πS0 + πB1 − πB0] uN ≥ ψ.
(IC)

But, by assumption, the probabilities for a given
effort level add up to one: πN0 + πS0 + πB0 = 1
and πN1 + πS1 + πB1 = 1. Therefore the above
inequality simplifies to 0 ≥ ψ, which contradicts the
assumption that the effort cost is strictly positive.
It follows that there cannot be full insurance at the
optimum.

Verbal arguments for why, or why not, the op-
timal contract involves full insurance if P induces
e = 0: If P wants to induce e = 0, then the optimal
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contract will involve full insurance. The intuitive
reason is that in this case P does not care about
A’s effort level: P has no ambition to try to incen-
tivize A to make an effort (if A were to make an
effort anyway, P can’t be hurt by that). Therefore,
the moral hazard feature of the model (i.e., that
A’s effort choice is not observable by P) does not
matter. Stated slightly more technically, if P wants
to induce e = 0 then there is no IC constraint that
must be satisfied and which could give rise to un-
derinsurance.
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